Copied to
clipboard

G = C42.16D6order 192 = 26·3

16th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.16D6, C81(C4×S3), C241(C2×C4), C8⋊C41S3, C24⋊C21C4, C6.11(C4×D4), (C2×C8).53D6, (C4×Dic6)⋊2C2, Dic69(C2×C4), (C4×D12).5C2, C241C416C2, C2.14(C4×D12), D12.14(C2×C4), (C2×C12).236D4, (C2×C4).114D12, C2.1(C8⋊D6), C6.2(C8⋊C22), C31(SD16⋊C4), (C2×C24).54C22, (C4×C12).14C22, C2.Dic1237C2, C2.D24.15C2, C2.1(C8.D6), C22.30(C2×D12), C6.3(C8.C22), C12.222(C4○D4), C4.106(C4○D12), (C2×C12).731C23, C12.105(C22×C4), (C2×D12).189C22, C4⋊Dic3.265C22, (C2×Dic6).208C22, C4.63(S3×C2×C4), (C3×C8⋊C4)⋊2C2, (C2×C24⋊C2).1C2, (C2×C6).114(C2×D4), (C2×C4).675(C22×S3), SmallGroup(192,269)

Series: Derived Chief Lower central Upper central

C1C12 — C42.16D6
C1C3C6C2×C6C2×C12C2×D12C2×C24⋊C2 — C42.16D6
C3C6C12 — C42.16D6
C1C22C42C8⋊C4

Generators and relations for C42.16D6
 G = < a,b,c,d | a4=b4=1, c6=dbd-1=b-1, d2=b2, ab=ba, cac-1=dad-1=ab2, bc=cb, dcd-1=b-1c5 >

Subgroups: 360 in 120 conjugacy classes, 51 normal (39 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, C2×C6, C42, C42, C22⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C24, C24, Dic6, Dic6, C4×S3, D12, D12, C2×Dic3, C2×C12, C22×S3, C8⋊C4, D4⋊C4, Q8⋊C4, C2.D8, C4×D4, C4×Q8, C2×SD16, C24⋊C2, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C4×C12, C2×C24, C2×Dic6, S3×C2×C4, C2×D12, SD16⋊C4, C2.Dic12, C241C4, C2.D24, C3×C8⋊C4, C4×Dic6, C4×D12, C2×C24⋊C2, C42.16D6
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22×C4, C2×D4, C4○D4, C4×S3, D12, C22×S3, C4×D4, C8⋊C22, C8.C22, S3×C2×C4, C2×D12, C4○D12, SD16⋊C4, C4×D12, C8⋊D6, C8.D6, C42.16D6

Smallest permutation representation of C42.16D6
On 96 points
Generators in S96
(1 39 51 82)(2 28 52 95)(3 41 53 84)(4 30 54 73)(5 43 55 86)(6 32 56 75)(7 45 57 88)(8 34 58 77)(9 47 59 90)(10 36 60 79)(11 25 61 92)(12 38 62 81)(13 27 63 94)(14 40 64 83)(15 29 65 96)(16 42 66 85)(17 31 67 74)(18 44 68 87)(19 33 69 76)(20 46 70 89)(21 35 71 78)(22 48 72 91)(23 37 49 80)(24 26 50 93)
(1 19 13 7)(2 20 14 8)(3 21 15 9)(4 22 16 10)(5 23 17 11)(6 24 18 12)(25 43 37 31)(26 44 38 32)(27 45 39 33)(28 46 40 34)(29 47 41 35)(30 48 42 36)(49 67 61 55)(50 68 62 56)(51 69 63 57)(52 70 64 58)(53 71 65 59)(54 72 66 60)(73 91 85 79)(74 92 86 80)(75 93 87 81)(76 94 88 82)(77 95 89 83)(78 96 90 84)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 18 13 6)(2 5 14 17)(3 16 15 4)(7 12 19 24)(8 23 20 11)(9 10 21 22)(25 46 37 34)(26 33 38 45)(27 44 39 32)(28 31 40 43)(29 42 41 30)(35 36 47 48)(49 70 61 58)(50 57 62 69)(51 68 63 56)(52 55 64 67)(53 66 65 54)(59 60 71 72)(73 96 85 84)(74 83 86 95)(75 94 87 82)(76 81 88 93)(77 92 89 80)(78 79 90 91)

G:=sub<Sym(96)| (1,39,51,82)(2,28,52,95)(3,41,53,84)(4,30,54,73)(5,43,55,86)(6,32,56,75)(7,45,57,88)(8,34,58,77)(9,47,59,90)(10,36,60,79)(11,25,61,92)(12,38,62,81)(13,27,63,94)(14,40,64,83)(15,29,65,96)(16,42,66,85)(17,31,67,74)(18,44,68,87)(19,33,69,76)(20,46,70,89)(21,35,71,78)(22,48,72,91)(23,37,49,80)(24,26,50,93), (1,19,13,7)(2,20,14,8)(3,21,15,9)(4,22,16,10)(5,23,17,11)(6,24,18,12)(25,43,37,31)(26,44,38,32)(27,45,39,33)(28,46,40,34)(29,47,41,35)(30,48,42,36)(49,67,61,55)(50,68,62,56)(51,69,63,57)(52,70,64,58)(53,71,65,59)(54,72,66,60)(73,91,85,79)(74,92,86,80)(75,93,87,81)(76,94,88,82)(77,95,89,83)(78,96,90,84), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,18,13,6)(2,5,14,17)(3,16,15,4)(7,12,19,24)(8,23,20,11)(9,10,21,22)(25,46,37,34)(26,33,38,45)(27,44,39,32)(28,31,40,43)(29,42,41,30)(35,36,47,48)(49,70,61,58)(50,57,62,69)(51,68,63,56)(52,55,64,67)(53,66,65,54)(59,60,71,72)(73,96,85,84)(74,83,86,95)(75,94,87,82)(76,81,88,93)(77,92,89,80)(78,79,90,91)>;

G:=Group( (1,39,51,82)(2,28,52,95)(3,41,53,84)(4,30,54,73)(5,43,55,86)(6,32,56,75)(7,45,57,88)(8,34,58,77)(9,47,59,90)(10,36,60,79)(11,25,61,92)(12,38,62,81)(13,27,63,94)(14,40,64,83)(15,29,65,96)(16,42,66,85)(17,31,67,74)(18,44,68,87)(19,33,69,76)(20,46,70,89)(21,35,71,78)(22,48,72,91)(23,37,49,80)(24,26,50,93), (1,19,13,7)(2,20,14,8)(3,21,15,9)(4,22,16,10)(5,23,17,11)(6,24,18,12)(25,43,37,31)(26,44,38,32)(27,45,39,33)(28,46,40,34)(29,47,41,35)(30,48,42,36)(49,67,61,55)(50,68,62,56)(51,69,63,57)(52,70,64,58)(53,71,65,59)(54,72,66,60)(73,91,85,79)(74,92,86,80)(75,93,87,81)(76,94,88,82)(77,95,89,83)(78,96,90,84), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,18,13,6)(2,5,14,17)(3,16,15,4)(7,12,19,24)(8,23,20,11)(9,10,21,22)(25,46,37,34)(26,33,38,45)(27,44,39,32)(28,31,40,43)(29,42,41,30)(35,36,47,48)(49,70,61,58)(50,57,62,69)(51,68,63,56)(52,55,64,67)(53,66,65,54)(59,60,71,72)(73,96,85,84)(74,83,86,95)(75,94,87,82)(76,81,88,93)(77,92,89,80)(78,79,90,91) );

G=PermutationGroup([[(1,39,51,82),(2,28,52,95),(3,41,53,84),(4,30,54,73),(5,43,55,86),(6,32,56,75),(7,45,57,88),(8,34,58,77),(9,47,59,90),(10,36,60,79),(11,25,61,92),(12,38,62,81),(13,27,63,94),(14,40,64,83),(15,29,65,96),(16,42,66,85),(17,31,67,74),(18,44,68,87),(19,33,69,76),(20,46,70,89),(21,35,71,78),(22,48,72,91),(23,37,49,80),(24,26,50,93)], [(1,19,13,7),(2,20,14,8),(3,21,15,9),(4,22,16,10),(5,23,17,11),(6,24,18,12),(25,43,37,31),(26,44,38,32),(27,45,39,33),(28,46,40,34),(29,47,41,35),(30,48,42,36),(49,67,61,55),(50,68,62,56),(51,69,63,57),(52,70,64,58),(53,71,65,59),(54,72,66,60),(73,91,85,79),(74,92,86,80),(75,93,87,81),(76,94,88,82),(77,95,89,83),(78,96,90,84)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,18,13,6),(2,5,14,17),(3,16,15,4),(7,12,19,24),(8,23,20,11),(9,10,21,22),(25,46,37,34),(26,33,38,45),(27,44,39,32),(28,31,40,43),(29,42,41,30),(35,36,47,48),(49,70,61,58),(50,57,62,69),(51,68,63,56),(52,55,64,67),(53,66,65,54),(59,60,71,72),(73,96,85,84),(74,83,86,95),(75,94,87,82),(76,81,88,93),(77,92,89,80),(78,79,90,91)]])

42 conjugacy classes

class 1 2A2B2C2D2E 3 4A···4F4G···4L6A6B6C8A8B8C8D12A12B12C12D12E12F12G12H24A···24H
order12222234···44···46668888121212121212121224···24
size1111121222···212···122224444222244444···4

42 irreducible representations

dim111111111222222224444
type++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C4S3D4D6D6C4○D4C4×S3D12C4○D12C8⋊C22C8.C22C8⋊D6C8.D6
kernelC42.16D6C2.Dic12C241C4C2.D24C3×C8⋊C4C4×Dic6C4×D12C2×C24⋊C2C24⋊C2C8⋊C4C2×C12C42C2×C8C12C8C2×C4C4C6C6C2C2
# reps111111118121224441122

Matrix representation of C42.16D6 in GL8(𝔽73)

720000000
072000000
004600000
000460000
00000010
00000001
000072000
000007200
,
10000000
01000000
007200000
000720000
000021300
0000235200
000000213
0000002352
,
01000000
721000000
0064250000
002390000
00005237459
000016456354
00004592136
000063545728
,
721000000
01000000
009480000
0047640000
000045365414
000043283719
000054142837
000037193045

G:=sub<GL(8,GF(73))| [72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,46,0,0,0,0,0,0,0,0,46,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,21,23,0,0,0,0,0,0,3,52,0,0,0,0,0,0,0,0,21,23,0,0,0,0,0,0,3,52],[0,72,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,64,23,0,0,0,0,0,0,25,9,0,0,0,0,0,0,0,0,52,16,4,63,0,0,0,0,37,45,59,54,0,0,0,0,4,63,21,57,0,0,0,0,59,54,36,28],[72,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,9,47,0,0,0,0,0,0,48,64,0,0,0,0,0,0,0,0,45,43,54,37,0,0,0,0,36,28,14,19,0,0,0,0,54,37,28,30,0,0,0,0,14,19,37,45] >;

C42.16D6 in GAP, Magma, Sage, TeX

C_4^2._{16}D_6
% in TeX

G:=Group("C4^2.16D6");
// GroupNames label

G:=SmallGroup(192,269);
// by ID

G=gap.SmallGroup(192,269);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,387,58,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=d*b*d^-1=b^-1,d^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,b*c=c*b,d*c*d^-1=b^-1*c^5>;
// generators/relations

׿
×
𝔽